
WarpDrive: Massively Parallel Hashing on
Multi-GPU Nodes

Daniel Jünger
Institute for Computer Science

Johannes Gutenberg University

Mainz, 55128 Germany

Email: djuenger@students.uni-mainz.de

Christian Hundt
Institute for Computer Science

Johannes Gutenberg University

Mainz, 55128 Germany

Email: hundt@uni-mainz.de

Bertil Schmidt
Institute for Computer Science

Johannes Gutenberg University

Mainz, 55128 Germany

Email: bertil.schmidt@uni-mainz.de

Abstract—Hash maps are among the most versatile data
structures in computer science because of their compact data
layout and expected constant time complexity for insertion and
querying. However, associated memory access patterns during the
probing phase are highly irregular resulting in strongly memory-
bound implementations. Massively parallel accelerators such as
CUDA-enabled GPUs may overcome this limitation by virtue of
their fast video memory featuring almost one TB/s bandwidth in
comparison to main memory modules of state-of-the-art CPUs
with less than 100 GB/s. Unfortunately, the size of hash maps
supported by existing single-GPU hashing implementations is
restricted by the limited amount of available video RAM. Hence,
hash map construction and querying that scales across multiple
GPUs is urgently needed in order to support structured storage
of bigger datasets at high speeds.

In this paper, we introduce WarpDrive – a scalable, distributed
single-node multi-GPU implementation for the construction and
querying of billions of key-value pairs. We propose a novel
subwarp-based probing scheme featuring coalesced memory
access over consecutive memory regions in order to mitigate the
high latency of irregular access patterns. Our implementation
achieves 1.4 billion insertions per second in single-GPU mode
for a load factor of 0.95 thereby outperforming the GPU-cuckoo
implementation of the CUDPP library by a factor of 2.8 on a
P100. Furthermore, we present transparent scaling to multiple
GPUs within the same node with up to 4.3 billion operations
per second for high load factors on four P100 GPUs connected
by NVLink technology. WarpDrive is free software and can be
downloaded at https://github.com/sleeepyjack/warpdrive.

I. INTRODUCTION

Hash maps are ubiquitous in informatics and almost every

field of natural science. This includes the representation and

processing of sparse data such as bag-of-words models [1],

the efficient intersection of voxelized geometric objects [2],

and approximate nearest neighbor computation [3]. Further-

more, hashing has manifold applications in bioinformatics, e.g.

almost duplicate detection in metagenomic classification [4],

[5], or seed index construction during short read mapping onto

reference genomes [6].

With the ongoing prevalence of Big Data technologies,

size and availability of recorded data are expected to grow

rapidly in the foreseeing future. As a result, efficient hash

map implementations are of high importance to a variety of

applications.

Massively parallel accelerators have been widely adopted

for number crunching due to their vast compute capability

and highly competitive compute-to-energy ratio. Besides that,

many application with regular memory access patterns benefit

additionally from their high bandwidth video memory which

outperforms common memory modules of traditional work-

stations by almost one order-of-magnitude. Unfortunately,

those performance gains may vanish for memory-bound data-

intensive algorithms with highly irregular access patterns.

This is the case for hash-based index construction: even

though insertion of large numbers of key-values pairs can be

performed in parallel, associated main memory accesses are

slow due to their random nature. Nevertheless, a number of

approaches have been proposed for GPU-based hashing using

sophisticated probing schemes and memory access techniques

[2], [7]–[9]. However, speedups in comparison to state-of-the-

art CPU implementations [10] are only modest. Furthermore,

all these approaches are restricted to a single GPU. Thus, the

supported in-core hash map size is bounded by the available

global memory which limits the applicability for processing

large-scale datasets.

The contributions of this paper are three-fold.

1) We introduce a novel GPU-based hash map algo-

rithm featuring an unprecedented subwarp-level probing

scheme tailored to suit the characteristics of high latency

and high bandwidth video memory which outperforms

existing single-GPU approaches by a factor of approxi-

mately 3 for high load factors α ≥ 95% .

2) We propose a scalable multi-GPU hash map construc-

tion/querying scheme that allows for the building of hash

maps containing several billions of key-value pairs by

exploiting fast GPU interconnection networks within a

single node. Using a compute node with four Tesla P100

GPUs connected by NVLink technology we are able to

process 32 GB of data in less than 2 seconds.

3) We present an asynchronous technique that allows for

the execution of out-of-core insertion and retrieval op-

erations from/to the CPU by overlapping data transfers

over PCIe/NVLINK and computation in order to reduce

the impact of expensive communication primitives.

The rest of this paper is organized as follows. Background

on hashing and associated parallelization strategies is provided

in Section II. Section III discusses related work. Our single-

441

2018 IEEE International Parallel and Distributed Processing Symposium

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPS.2018.00054

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 00:45:15 UTC from IEEE Xplore. Restrictions apply.

GPU and multi-GPU hash map construction algorithms are

presented in Section IV. Section V discusses experimental

results. Section VI concludes the paper.

II. BACKGROUND

Hash maps allow for the modelling of exact functional

dependencies f : K → V , k �→ f(k) := v mapping a sparse

domain K onto its associated image space V . In contrast

to dense look-up tables which reserve dedicated memory for

every potential key k ∈ K, hash maps compress the sparse

domain K into an index set I by means of a hash function

h : K → I , k �→ h(k) := i which assigns a memory position

i to each key k. While bijective mappings between K and I
can be realized with minimal perfect hash functions, they often

suffer from high computation time and the assumption that

the complete set of keys K is known a priori. Alternatively,

h can be chosen as unfaithful (non-injective) map which

introduces potential collisions h(k) = h(k′) for two distinct

keys k, k′ ∈ K. Those ambiguities have to be resolved using

an appropriate collision resolution technique. Among the most

popular strategies are:

• Chaining: two or more ambiguous keys are stored in a

bucket residing at the same position i. This involves either

cache-inefficient pointer chasing in case of linked lists or

memory over-subscription in case of fixed-length arrays.

• Open Addressing: stores colliding entries in distinct

locations by means of a deterministic probing scheme

which traverses a sequence of positions in a dedicated

order.

From a parallelization point of view, open addressing is usually

preferable over chaining since updates on key-value pairs

(k, v) can often be accomplished efficiently in an atomic

manner while lock-free lists waste valuable memory by storing

a pointer for each node. Race condition-free insertion and dele-

tion of nodes in linked lists is error-prone due to (in)famous

pitfalls of lock-free programming such as the ABA problem

and priority inversion [11]. Furthermore, open addressing

hash maps can be extended to multi-value hash maps in a

straightforward manner. Hence, we focus on open addressing

throughout the rest of this paper.

While x86 64 CPUs support compare-and-swap (CAS)

instructions for up to 128 consecutively stored bits, massively

parallel accelerators such as CUDA-enabled devices are lim-

ited to 64-bit words. As a result, we have to pack key-value

pairs (k, v) into 64 bits using an array of struct (AOS) memory

layout. If all bits are needed for the key one can alternatively

store the arrays of keys K and values V separately as struct of
arrays (SOA). The latter variant uses relaxed reads and writes

to the value array which might introduce priority inversion in

case of simultaneously inserting distinct values for the same

key. Another advantage of AOS is its cache-friendly access

pattern during the querying phase (see Fig. 1).

Open addressing hash maps are equipped with a deter-

ministic probing scheme which specifies a sequence of to

be probed slots in case the initial position h(k) is already

occupied by a colliding entry h(k′) = h(k). The majority of

AOS k0 v0 k1 v1 k2 v2 k3 v3

SOA
fully atomic access

potentially relaxed access

k0
v0

k1
v1

k2
v2

k3
v3

Fig. 1. Memory layouts for open addressing hash maps. AOS ensures cache-
friendly and fully atomic access onto key-value pairs up to 64 bits. In contrast,
the separated key and value arrays in the SOA format allow for longer keys
at the cost of inferior caching and potential priority inversion during updates.

implementations employ one or a combination of the following

probing strategies. Let l be the number of probing attempts, c
be the capacity of the hash map, and s(k, l) the l-th element

in the sequence where s(k, 0) = h(k) then:

• Linear Probing: searches an unoccupied slot (either

empty or deleted) in the direct neighborhood of h(k).
This results in the probing sequence

(
s(k, l)

)
l∈N0

where:

s(k, l) =
(
h(k) + l

)
mod c . (1)

• Quadratic Probing: aims to escape crowded regions

typically caused by linear probing using quadratic steps:

s(k, l) =
(
h(k) + l2

)
mod c . (2)

• Chaotic Probing/Double Hashing: uses a completely

random but reproducible step pattern. Let g(k) be a

second hash function then:

s(k, l) =
(
h(k) + l · g(k))mod c . (3)

While linear probing is cache-efficient, it tends to produce

unreasonably long sequences in occupied regions. Quadratic

and chaotic probing avoid so-called primary clustering using

larger step sizes at the cost of more cache misses. From a

theoretical point of view, it can be shown that in general linear

probing provides only weak guarantees: a pair-wise indepen-

dent hash function ensures expected logarithmic time for hash

table operations whereas a 5-wise independent hash function

warrants operations in constant time [12]. The latter can

be constructed using tabulation based hashing schemes [13].

Nevertheless, double hashing with two pair-wise independent

hash functions ensures comparably strong properties [14].

Note that straightforward extensions of the aforementioned

probing schemes have been proposed in the literature: among

others Cuckoo Hashing [2], Robin Hood Hashing [15], and

Hopscotch Hashing [16].

Fully featured (sequential) hash map implementations such

as std::unordered_map from the C++11 standard library

support on-demand resizing in case the number of inserted

elements n exceed the capacity c. A common strategy is to

reinsert the whole data structure into a new instance if the load
factor α = n

c reaches a critical value of e.g. 90%. Moreover,

keys and values of arbitrary size can be inserted and deleted at

any time. The situation is more complex in a parallel context:

modifications of the same slot have to be serialized using either

slow global mutexes or efficient CAS operations on key-value

pairs of limited length. This paper focuses on the latter. While

442

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 00:45:15 UTC from IEEE Xplore. Restrictions apply.

insertions and queries can in general be issued concurrently

without violating the integrity of the hash map, the actual

outcome is determined by the current event horizon of the data

structure, i.e. a to be inserted key that is queried at the same

time might be returned or not depending on which operation

wins the race. Our implementation features robust execution

times even for high load factors α > 95%. In the unlikely

case that the probing scheme cannot determine an empty slot

for n < c the whole data structure is invalidated followed by

a subsequent reconstruction with a distinct hash function.

A competing (concurrent) data structure to open addressing

hash maps are key-value stores based on sort-and-compress

approaches. The keys are sorted together with their associated

values using an efficient sorting algorithm such as CUDA

Unbound’s radix sort primitive [17]. Multiple values belonging

to the same key (in case of multi-value hash maps) are

subsequently compressed using a logarithmic time parallel

prefix scan. Querying can be accomplished in logarithmic time

with a binary search. A major drawback of sort-and-compress

based techniques is their memory consumption: both sorting

and prefix computation usually requireO(n) auxiliary memory

which effectively reduces the capacity by a factor of two. Open

addressing hash maps require memory for only c ≈ n slots

while operating at the same or superior speed.

III. RELATED WORK

Hash map related research dates back to the very beginning

of computer science. Early research elaborates on the theoret-

ical foundations of hashing and the efficient construction of

sequential hash maps. The multitude of publications cannot

be covered within the scope of this manuscript. For the sake

of brevity, Don Knuth’s notes on open addressing [18] shall

serve as representative for this era.

The focus of hash map research has been shifting with

the introduction of novel hardware architectures and data

acquisition technologies. The emergence of affordable multi-

core CPUs and programmable GPUs in the consumer market

has been perceived as a major game changer. In the early 90s,

Matias et al. [19] laid the theoretical foundations of concurrent

hashing on Parallel Random Access Machines. Maier et al.

[10] recently proposed Folklore – a scalable concurrent hash

map suite for multi-core CPUs. Their implementation employs

CAS operations on fixed-length machine words and achieves

a performance of up to 300 million insertions per second

on a 24-core dual-socket workstation with 48 threads. On

that task, Folklore outperforms competing CPU implementa-

tion including Intel’s tbb::concurrent_hash_map from

the Threading Building Blocks (TBB) library. Other notable

but less scalable multi-core implementations include Junction
[20], and libcuckoo [21].

In comparison, hash map implementations on massively

parallel architectures such as CUDA-enabled accelerators have

received less attention. Alcantara et al. [2] were among the

first to investigate hash map construction on CUDA-capable

GPUs. Their single-GPU implementation employs a two-stage

hashing cascade where keys are separated into buckets of

size 512 residing in global memory. Subsequently, the buckets

are rehashed in parallel using a third degree cuckoo hashing

scheme which is performed on fast shared memory. In later

work [7], the same authors propose a single-pass variant (GPU
cuckoo hash) based on fourth degree cuckoo hashing which

supports load factors of roughly 80% achieving an insertion

performance of up to 250 million inserts per seconds on a GTX

470. In contrast, our WarpDrive probing scheme features sig-

nificantly higher insertion rates even for load factors of more

than 95%. Furthermore, WarpDrive can be scaled transparently

over multiple GPUs.

Garcı́a et al. proposed a GPU hash map based on Robin

Hood Hashing [8] which equalizes probing lengths by aug-

menting each key with an additional 4-bit age indicator. Their

implementation uses one thread for the insertion of a key-

value pair in a lock-free manner at comparable speed to

Alcantara’s hash map. In contrast, our implementation utilizes

a warp or a coalesced subgroup, respectively. As we will show,

subwarp-synchronous probing is key to improve single-GPU

performance. Note that WarpDrive is in principle amenable to

Robin Hood Hashing based probing schemes as well.

Stadium Hash [9] uses an auxiliary table (ticket board) in

addition to the hash table. Each CUDA thread attempts to

insert a key by initially querying the ticket board. Only if the

availability bit of the probed ticket board slot indicates that

the corresponding hash table bucket is still available, the key-

value pair is actually inserted – otherwise it is re-hashed. If

the full hash map can be kept in GPU global memory (in-
core) the performance of Stadium Hash is 1.04x-1.19x faster

than GPU cuckoo hash on a GTX780 GPU at a load factor of

80% on average. Furthermore, Stadium Hash reports an out-
of-core implementation where only the ticket board is kept

in GPU global memory while the full hash table is stored in

host memory. Even though expensive accesses to host memory

are reduced by means of the ticket board, the performance

drops to around 100 million inserts per second due to slow

PCIe transfers. In this paper we address the limitation to the

hash table size imposed by the bounded amount of global

memory on GPUs by proposing a mechanism that allows for

the efficient distribution of hash maps over multiple GPUs

within the same node instead of using slow host memory

accesses. Note that our distribution mechanism is not specific

to any particular probing scheme but can in principle be

incorporated into any of the previous single-GPU approaches.

IV. MASSIVELY PARALLEL HASH MAPS

In this section, we treat the construction of single-GPU

and multi-GPU hash maps separately. Subsection IV-A dis-

cusses our implementation of WarpDrive’s probing scheme in

the context of warp-synchronous programming up to CUDA

8 and its extension to cooperative groups in combination

with independent thread scheduling introduced in CUDA 9.

Subsection IV-B demonstrates how to distribute our hash

map over multiple GPUs attached to the same compute

node. This involves efficient partitioning of key-value pairs

443

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 00:45:15 UTC from IEEE Xplore. Restrictions apply.

and asynchronous inter-GPU communication using different

interconnection network topologies.

A. Single-GPU Hash Map Construction

Our probing scheme adheres closely to the traditional warp

execution model of CUDA-enabled GPUs where 32 contigu-

ous threads (a so-called warp) are executed simultaneously

on a Streaming Multiprocessor (SM) in lock-step manner. All

threads within a warp perform the same instruction at the same

time similar to the SIMD paradigm. The CUDA programming

model relaxes the strict SIMD model by allowing distinct

threads in the same warp to access non-contiguous memory

or diverge into different execution branches at the cost of seri-

alization. This computation model was coined by NVIDIA as

SIMT (Single Instruction Multiple Threads). Although SIMT

is more flexible, introducing non-coalesced memory accesses

and branch-divergence often leads to performance degradation

compared to strictly homogeneous SIMD algorithms.

Note that with the introduction of the Volta generation and

CUDA 9, consecutive threads within a warp can be scheduled

independently and thus have to be synchronized explicitly.

Nevertheless, WarpDrive is applicable to both thread schedul-

ing paradigms: traditional warp-synchronous programming on

pre-Volta hardware and independent thread scheduling on

(post-)Volta devices. At this point, let us fix the notation in

order to comply with both programming paradigms: |g| ∈
{1, 2, 4, 8, 16, 32} consecutive threads in the same thread block

shall be denoted as coalesced group (CG) g. The special

case |g| = 32 refers to a traditional warp. CGs are always

implicitly synchronized on pre-Volta hardware but are not

guaranteed to be executed in lock-step on (post-)Volta GPUs.

Hence, we will always state a synchronization call using

either the explicit __syncwarp() instruction or implicit

synchronization issued by member functions of a CG.

Our approach implements an open addressing hash map

based on a hybrid probing scheme that combines simultaneous

linear probing within a batch consisting of |g| slots and se-

quential chaotic probing of those batches. Parallel insertion is

accomplished as illustrated in Fig. 2 and listed as pseudocode

in Fig. 3. Each CG g independently inserts a key-value pair

d = (k, v) into the hash table t with capacity c = |t|. The

parameter pmax corresponds to the outer probing loop (Line 4)

and denotes the maximum number of unsuccessful probing

attempts of g before raising an insertion error (Line 26).

The inner probing loop (Line 6) ensures a consistent probing

scheme in case that the size of g is varied over time. After

applying a hash function to the key of d (Line 5) the resulting

hash value h is used i) to determine the table slot to be

probed by each thread in g (Line 7) and ii) to load the

corresponding element dt into fast registers (Line 8). The

CG probes |g| consecutive slots which results in a coalesced

and therefore efficient global memory access pattern. At this

certain point, the copies of the keys in registers might have

already been deprecated since another CG may have occupied

an empty or deleted slot in the same region. As a conse-

quence, we have to guard the to be accomplished insertion

with a CAS operation in a later phase. In the following,

all members of the CG determine whether their stored key

is an empty placeholder or tombstone (in case of previous

deletions). The resulting binary mask is broadcasted as packed

|g|-bit integer to all active members of the CG (Line 9).

This can be accomplished with the intrinsic instruction auto
mask=__ballot[_sync](predicate) which is either

stated as explicit call in pre-Volta code or is a dedicated

member function of a CG in (post-)Volta implementations.

Let us assume that there is at least one unoccupied slot

in that region (i.e. mask �= 0), then we attempt to insert

the key-value pair d at the leftmost position in the CG

using an atomic CAS operation (Line 13). If successful, i)

all group members are notified using the collective group

predicate __any[_sync](predicate) or its CG member

counterpart (Line 17) and ii) finally exit the function (Line 18).

In case of failure, we consecutively probe the remaining active

bits in ascending order until we exhaust the whole probing

window (as illustrated in Fig. 2). If insertion remains unsuc-

cessful even after successive reloading from global memory

(Line 20), we move on to the next probing window. Queries

are performed in a similar way whereby the atomic swap is

not required. Note that the described pattern is safe in case

of concurrently issued insertions and queries but cannot be

used in combination with deletions. Nevertheless, insertions

and deletions can be safely interleaved using global barriers.

Also note that the collectives g.ballot(predicate) and

g.any(predicate) implicitly synchronize all threads in a

coalesced group.

coalesced group (|g| = 8)

∅ ∅ ∅global memory

coalesced load

∅ ∅ ∅registers

__ballot[_sync]

|g|-bit integer 0 0 0 0 01 1 1

Fig. 2. Linear probing within a CG consisting of |g| = 8 contiguous threads.
The thick red box denotes the leading thread which attempts the first probe.

B. Multi-GPU Hash Map Construction

Hash maps can be distributed in several ways over m > 1
GPUs. Distinct approaches can be categorized by their distri-

bution patterns of key-value pairs. We use a a partition (hash)

function p(k) ∈ {0, 1, . . . ,m− 1} which assigns each k ∈ K
a unique GPU identifier.

• Host-sided partitioning: key-value pairs are partitioned

on the host by means of the value of p(k). Subsequently,

the partitions are transferred and inserted into their re-

spective hash map residing on the corresponding GPU.

444

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 00:45:15 UTC from IEEE Xplore. Restrictions apply.

1: function INSERT(d, g, t, pmax)

2: rank ← g.thread rank
3: success← false
4: for p← 0, pmax do � outer probing loop

5: h← hash(d, p)
6: for q ← 0, 32

|g| do � inner probing loop

7: i← (h+ q · |g|+ rank) mod |t|
8: dt ← t[i]
9: mask ← g.ballot(dt = ∅) � sync

10: while mask �= 0 do
11: leader ← ffs(mask) � leftmost active

12: if rank = leader then
13: if dt = CAS(t+ i, dt, d) then
14: success← true
15: end if
16: end if
17: if g.any(success) then � sync

18: return � insert successful

19: else
20: dt ← t[i] � reload dt
21: mask ← g.ballot(dt = ∅) � sync

22: end if
23: end while
24: end for
25: end for
26: raise insertion error
27: end function

Fig. 3. This function attempts to inserts a key-value pair d with at most
pmax chaotic probes into the hash table t residing in global memory using
a coalesced thread group g. Further details are provided in Section IV-A.

• System-wide lock-free insertion: the hash map resides

simultaneously on all GPUs realized by unified memory

addressing. Lock-free CAS instructions have to be issued

across multiple devices using slow system-wide atomics.

• Unstructured distribution: key-value pairs are split into

portions of approximately equal size and transferred to

the GPUs. Each GPU maintains an independent hash

map. Unfortunately, this implies that we have no a priori

information on which device a specific key is stored.

• Distributed multisplit transposition: key-value pairs are

initially transferred to m GPUs similar to unstructured

distribution. Subsequently, they are separated on each

GPU into m portions by means of p(k). Afterwards, the

m×m partitions are reshuffled across devices such that

GPU i exclusively holds keys where p(k) = i.

Trivial host-sided partitioning can be ruled out from the very

beginning since linear time reordering of elements in host

RAM is almost as expensive as CPU-based hash map con-

struction. Although solutions based on system-wide atomics
are preferable in terms of code complexity, they tend to be

unreasonably slow in our preliminary experiments. Unstruc-
tured distribution avoids host-sided reordering of elements and

is only bounded by the bandwidth of asynchronous memory

transfers from the host to the devices. Nevertheless, querying

is cumbersome and time-consuming since we have no a priori

information about the location of a certain key. Distributed
multisplit transposition avoids the brute-force querying of all

devices since each GPU exclusively holds a subset of a priori

known keys. The involved partitioning (multisplit) into m
classes can be accomplished in fast video RAM in contrast to

slow host-sided partitioning in ordinary RAM. The resulting

m×m partition table (m partitions on m GPUs) is transposed

in a subsequent step by communicating m− 1 partitions from

each of the m GPUs to their respective target device. All-to-
all communication is bounded by the overall bandwidth of the

utilized interconnection network topology. As we will show,

both the concurrent multisplit computation and subsequent

transposition can be performed efficiently on multi-GPU nodes

with NVLINK support.

Single-GPU multisplit could be performed by sorting key-

value pairs according to the value of p(k) using massively par-

allel radix sort as provided by CUB [17]. However, Ashkiani

et al. [22] proved that the same can be accomplished with less

computational effort. Their CUDA implementation computes a

histogram consisting of m slots using a hierarchy of register-

based shuffles in a warp, shared memory-based shuffles in

a thread block, and global memory-based shuffles over the

whole device. Our approach is based on a simpler technique

that consecutively computes m binary splits (one class versus

the rest) of keys in global memory. This can be accomplished

using a warp-aggregated atomic counter that increments the

final position of a key within a coalesced group as described in

[23]. Although warp-aggregated compression is slightly slower

than Ashkiani’s full stack GPU multisplit implementation, we

stick to our basic approach. It only accounts for a minor

portion of the overall runtime and thus further optimization

does not significantly increase performance.

The resulting m×m partition table T [gpu, part] stores the

number of elements and associated pointers of each partition

part residing on GPU gpu. In the following step, we transpose

T by asynchronously sending m2 −m off-diagonal elements

(gpu �= part) to their corresponding target device. The

resulting key-value distribution T t[part, gpu] concatenates all

elements belonging to a certain partition identifier p(k) = part
originally stemming from GPU gpu on the same device. Off-

sets are computed using row-wise exclusive prefix scans over

T for the senders and column-wise scans for the receivers. The

combination of both intra-device multisplit and subsequent

cross-device transposition is equivalent to a distributed multi-

GPU multisplit primitive. Distributed insertion is realized with

a multisplit → transposition → insert cascade. Note that

matrix transposition is an isomorphism and thus all-to-all

communication is reversible as well. Hence, querying can be

accomplished using a multisplit → transposition → query →
transposition cascade. Fig. 4 illustrates the workflow.

The overall performance of distributed insertion and query-

ing depends on the bandwidth of four basic operations. First,

asynchronous host-to-device communication is accomplished

over a bus (usually PCIe, infrequently NVLINK) to the devices

and vice versa. Hence, we are limited to a few tens of

445

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 00:45:15 UTC from IEEE Xplore. Restrictions apply.

50 11 51 42 31 62 43 ∅

19 20 37 74 57 73 25 ∅

12 67 14 94 86 89 53 ∅

17 40 35 44 56 16 26 ∅

random keys

GPU 0

GPU 1

GPU 2

GPU 3

50 42 62 11 51 31 43 ∅

20 37 57 73 25 74 19 ∅

12 89 53 14 94 86 67 ∅

40 44 56 16 17 26 35 ∅

multisplit with p(k) = k mod 4

GPU 0

GPU 1

GPU 2

GPU 3

partition table T

4 1 1 1
1 2 3 1
1 4 1 1
0 0 3 4

35 67 19 11 51 31 43 ∅

26 14 94 86 74 50 42 62
17 89 53 37 57 73 25 ∅

40 44 56 16 12 20 ∅ ∅

all-to-all transposition

GPU 0

GPU 1

GPU 2

GPU 3

transposed table T t

4 1 1 0
1 2 4 0
1 3 1 3
1 1 1 4

Fig. 4. Example for distributed multisplit of 4 × 7 = 28 random (not
necessarily unique) keys over four GPUs. Colored patterns correspond to
the value of the partition hash function p(k) = k mod 4 : 0 �→
blue horizonal lines, 1 �→ red vertical lines, 2 �→ green north east lines,
3 �→ magenta north west lines. The upper panel shows the initial setting.
The centered panel depicts the key distribution and associated partition table
T after independently performing a single-GPU multisplit on each GPU.
The final transposition of the partition table is achieved with an all-to-all
communication pattern. Note that all operations are issued out-of-place using
one double buffer per GPU of sufficient size (8 in this example).

gigabytes per second in case of PCIe which is a bottleneck

even for single-GPU hash maps. Fortunately, this step can

often be bypassed if the to be inserted data already resides

on the GPUs in case of a tight integration into a processing

tool chain or alternatively can be generated on-the-fly. As an

example, bioinformatics applications often extract and hash

all n − k + 1 substrings of length k (called k-mers) from

a DNA sequence of length n where k ≤ n. Thus, keys of

overall size k · (n − k + 1) ∈ O(n · k) can be generated on

the devices from only O(n) data that has been transferred

to the GPUs in a previous step. In this case, the effective

transfer rate over the PCIe bus is artificially increased by a

factor of approximately k. Other examples include windowed

patch extraction from images or high-resolution rasterization

of 3D meshes. Second, the single-GPU multisplit primitive

is exclusively executed on fast video RAM and thus has only

minor impact on the performance. Third, the all-to-all transpo-

sition step communicates data among the GPUs. Consequently,

transposition speed heavily depends on the bandwidth of

the interconnection network topology. Fourth, insertion and

querying of key-value pairs is exclusively performed on fast

video RAM. Unfortunately, we can only saturate a fraction of

the overall bandwidth due to the random nature of hashing.

For the sake of simplicity, let us make the (realistic)

assumption that the time needed for PCIe transfers is similar to

the accumulated time needed for the multisplit, transpose, and

insertion steps. In this case, the overall performance degrades

to half the PCIe bandwidth since the whole traversal of the

insertion cascade relies on global barriers. Nevertheless, PCIe

transfers issued in one CPU thread on the host can be over-

lapped with the execution of the remaining communication

and insertion primitives of another batch issued in a second

multi-thread. The same is true for exclusively device-sided

primitives: partitioning of data on GPUs can be overlapped

with all-to-all communication and so forth. Our WarpDrive

implementation supports asynchronous insertion and querying

with a user-defined number of CPU threads in order to fully

utilize the available hardware resources (see Figure 5).

time

thread 2
thread 1
thread 0

sequential

H2D MST INS
H2D MST INS

H2D MST INS

H2D MST INS

Fig. 5. Example demonstrating the efficient overlapping of host-to-device
memory transfers (H2D), multisplit + transposition (MST), and insertion (INS)
using 3 multi-threads. The H2D → MST → INS cascade remains sequential
within each batch. However, the runtime of distinct primitives in different
threads can be overlapped. Note that each block within a batch utilizes
different hardware resources of a multi-GPU node (H2D: PCIe bus, MST:
mainly NVLINK interconnection network, INS: video memory).

V. EXPERIMENTS

A. Experimental Setup

All experiments are conducted on a multi-GPU compute

node being part of the Mogon II supercomputer at JGU Mainz.

• CPU: dual socket Intel Xeon E5-2680 v4@2.40GHz fea-

turing 2×14 physical cores with hyperthreading support.

• RAM: 16×16 GB = 256 GB of DDR4 modules (ECC).

• GPU: 4 NVIDIA Tesla P100 boards@1.48GHz.

• VRAM: 16 GB of HBM2 stacked memory for each GPU

featuring up to 720 GB/s peak bandwidth.

• NVLINK: augmented fully connected graph consisting of

4× 4 bidirectional links with 20 GB/s bandwidth each.

• Software: CUDA 9.0, GCC 5.4.0, CentOS Linux 7

A schematic layout of the NVLINK based GPU interconnec-

tion network topology is illustrated in Fig. 6. At least one

bidirectional NVLINK edge is established between each pair

of GPUs. Additionally, two parallel edges of the 2D hypercube

subnetwork are augmented with an additional edge. Each pair

of GPUs is connected via a dedicated PCIe switch to a CPU.

Note that this corresponds to an accumulated theoretical peak

bandwidth for asynchronous host-to-device transfers of 24
GB/s (≈ 22 GB/s in experiments).

Performance evaluation is conducted on three distinct 4-byte

key distributions with arbitrary 4-byte values.

• Unique distribution: up to 232 unique keys are sampled

without replacement from the space of 4-byte keys. This

sampling method is equivalent to a Fisher-Yates shuffle

of an ascending integer sequence.

446

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 00:45:15 UTC from IEEE Xplore. Restrictions apply.

GPU 0 GPU 1

GPU 2 GPU 3

NVLINK

(≈ 20 GB/s)

NVLINK

(≈ 20 GB/s)

switch

switch

CPUs

PCIe (≤ 12 GB/s)

PCIe (≤ 12 GB/s)

Fig. 6. Interconnection network of a multi-GPU node with 4 Tesla P100
devices. NVLINK supports bidirectional access between GPUs featuring ≈
20 GB/s bandwidth per NVLINK edge. Host-to-device traffic is routed with
≤ 2× 12 GB/s bandwidth over 2 PCIe switches.

• Uniform distribution: up to 232 keys are drawn with

replacement from a uniform distribution. The number of

unique keys scales with the bootstrap ratio (1−e−n/232).
• Zipf distribution: the multiplicity of keys is distributed

according to a power law. The multiplicity of a key with

rank k is smaller than the one of the most common key

by a factor of k−s where s > 1 is an exponential damping

coefficient [24].

The quotient of the number of inserted elements and the

capacity (target load factor) coincides with the true load factor

α for unique keys but may overestimate α for the remaining

distributions.

The employed 4-byte hash functions are either the integer

finalizer of Appleby’s popular MurmurHash3 implementation

[25] or a similar approach proposed by Mueller [26]. Both

functions exhibit favorable avalanche properties and further act

as isomorphism on the space of 4-byte integers (being index

permutations). Hence, translated variants h̃y(x) = h(x + y)
for x, y ∈ uint32_t sustain the mathematical properties.

// murmur integer finalizer // mueller hash
uint32_t fmix32 (uint32_t x) uint32_t mueller(uint32_t x)
{ {

x ˆ= x >> 16; x ˆ= x >> 16;
x *= 0x85ebca6b; x *= 0x45d9f3b;
x ˆ= x >> 13; x ˆ= x >> 16;
x *= 0xc2b2ae35; x *= 0x45d9f3b;
x ˆ= x >> 16; x ˆ= x >> 16;
return x; return x;

} }

Execution times are reported as averaged wall clock time over

several runs. Time measurement is accomplished with the help

of precise timers provided by the CUDA event system. In all

experiments, we assume that the to be inserted or retrieved

data resides either in host RAM for operations issued from

the CPU or in video RAM for device-sided benchmarks. Test

data generation and the loading of files from disk are omitted.

B. Single-GPU Performance

In this subsection we discuss the performance of WarpDrive

on a single Tesla P100 GPU using different input distributions

and load factors. Additionally, we compare WarpDrive to

Alcantara’s single GPU implementation [2] which is included

in the CUDA Data Parallel Primitives Library (CUDPP). To

our best knowledge, CUDPP is the only publicly available

implementation amongst competing GPU hash tables.

The experimental protocol reads as follows: For each input

distribution we i) insert 227 (4+4)-byte key-value pairs (1 GB)

residing in video memory into the hash table and subsequently

ii) retrieve all elements to video memory. For both tasks we

measure the kernel execution time for different load factors

ranging from 40% to 99%. Note that CUDPP is constrained

to a maximum load of 97%. The key distributions are those

mentioned in Section V-A. However, uniformly drawing 227

keys out of 232 unique elements with replacement results in a

proportion of
(
1− exp(− 227

232)
)
232

227 ≈ 98.5% unique keys and

is therefore almost indistinguishable from a purely unique key

set in terms of insertion/retrieval performance. Hence we omit

the evaluation for this distribution for the given configuration.

Figure 7 illustrates the insertion/retrieval performance in

billion operations per second for a unique random key set.

The results show that the performance of WarpDrive (WD)

highly depends on the chosen group size |g|. A large group

size increases the probability of finding an unoccupied slot

within the given probing window, whereas small groups may

probe multiple windows at a higher group occupancy rate on

the Streaming Multiprocessors. This trade-off is applicable to

both insertion and retrieval. With increasing load larger group

sizes get more favorable but optimal performance is achieved

with |g| ∈ {2, 4, 8}. WarpDrive shows speedups over CUDPP

of 1.79, 2.18, 2.84 for insertion and 1.3, 1.34, 1.3 for retrieval

at load factors of 0.8, 0.9, 0.95 respectively. Note that the case

|g| = 1 represents the naı̈ve approach where one data element

is processed by a single hardware thread. Unlike on previous

architectures this approach is competitive to CUDPP on a Tesla

P100 for reasonable loads.

The results of the same experiment under a Zipf distributed

key set (s = 1 + 10−6) are shown in Figure 8. Multiple ele-

ments share the same key due to the nature of the underlying

distribution and thus share the same table slot. CUDPP does

not support key collisions unless a multi-value hash table is

used. However, our implementation resolves such collisions by

updating an already written value for a colliding key. Hence,

the value associated to a non-unique key is the last element

written on the event horizon of the insertion kernel for this

key. The observations made from the unique distribution also

hold for the Zipf distribution but even smaller group sizes are

favorable. Note that in this case the specified loads refers to

the actual occupancy of table slots after inserting all elements.

447

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 00:45:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Device-sided insertion and retrieval rates for varying group size parameters and load factors: unique distribution.

Fig. 8. Device-sided insertion and retrieval rates for varying group size parameters and load factors: Zipf distribution.

C. Multi-GPU Performance

This subsection investigates the weak and strong scaling

behavior of our proposed multi-GPU distribution cascades for

insertion and retrieval. Moreover, we shed light on the impact

of asynchronous overlapping techniques. Due to space restric-

tion we focus on a subset of possible hash map configurations:

a reasonably fast but not optimal setting uses a coalesced group

size of |g| = 4 and a target load factor of 95% for values of n
ranging from 228 (2 GB) to 232 (32 GB) packed 64-bit key-

value pairs. Insertion and retrieval operations are performed

in batches consisting of 224 elements (128 MB).

Initially, we perform a strong and weak scaling analysis on

unique keys for both device-sided cascades: i) multisplit →
transposition → insertion, and ii) multisplit → transposition

→ retrieval → transposition. The experimental setup reads:

• Strong scaling: overall n ∈ {228, 229} packed pairs

(2 GB / 4 GB) are inserted/retrieved into/from m GPUs.

As a result, each GPU processes n
m elements in parallel.

• Weak scaling: n ∈ {228, 229} packed pairs (2 GB / 4 GB)

are inserted/retrieved into/from each of the m GPUs.

Hence m · n elements are processed overall in parallel

ranging from 1 · 228 (2 GB) to 4 · 229 (16 GB) pairs.

Let τ(n,m) be the time needed to process n elements on m

GPUs then strong and weak scaling efficiency are defined as

Es(n,m) =
τ(n, 1)

m · τ(n,m)
, Ew(n,m) =

τ(n, 1)

τ(m · n,m)
(4)

The results are shown in Fig. 9. Both the strong and weak

scaling efficiency remain constant for m ≥ 2 which implies

good scalability. The efficiency drop from m = 1 to m = 2
can be explained by the time needed for the additional multi-

split and communication primitives. The super-linear speedup

observed in the strong scalability analysis during the insertion

of 229 elements is caused by performance degradation of

the single-GPU implementation for increasing capacities. A

detailed explanation is provided in the following experiment.

We further investigate the scalability in terms of varying

capacities for m = 4 GPUs using both the aforementioned

device-sided cascades and two additional host-sided insertion

and retrieval cascades. The latter prepend or append PCIe

transfers between host and devices to the already existing

device-sided pipelines. The experiments include the insertion

and retrieval of 228 (2 GB) to 232 (32 GB) elements for

three distinct key distributions (unique, uniform, Zipf: s =
1+10−6). Fig. 10 depicts the associated insertion and retrieval

rates. Query performance remains constantly high at up to 9

448

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 00:45:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Strong and weak scalability analysis using 1, 2, 3, and 4 GPUs. The
super-linear strong speedup of ’Insert 229’ (red solid line in upper panel) can
be explained by performance degradation of the single-GPU implementation
for an increasing number of inserted elements n with a load of α = 95%.

billion operations per second on the device over all tested

distributions and capacities. However, device-sided insertion

performance drops by up to a factor of two for n > 230

elements (> 2 GB on each of the 4 GPUs). The 16 GB

video memory of a P100 GPU are addressed via 8 memory

interfaces. Hence, we suspect that atomic CAS might degrade

if lock-free instructions are issued across several memory

interfaces. Note that this artifact explains the super-linear

speedup in the aforementioned strong scaling benchmark.

Host-sided insertions are faster than queries since the retrieval

cascade involves an additional PCIe transfer. Nevertheless,

the peak insertion/retrieval rates from/to the host correspond

to 84%/55% of the theoretically achievable PCIe bandwidth.

As a result, host-sided insertion is comparably fast as plain

memcopies from RAM to global memory.

Finally, we shed light on the impact of asynchronous cas-

cade overlapping. Fig. 11 illustrates the runtime decomposition

of two sequentially issued insertion and retrieval cascades over

PCIe together with their asynchronous variants using 2 and 4

multithreads. The execution times of the overlapped variants

can be reduced by up to 36% for insertion, and 45% for

querying in comparison to their sequential counterparts. The

fractions of multisplit and transposition range between 2% and

4% of the overall execution time. In detail, multisplit performs

Fig. 10. Insertion and retrieval performance for distinct key distributions
without PCIe transfers (upper panel) and including memory transfers from/to
the host (lower panel). Note that retrieval performance for the host variant
(dashed lines in lower panel) involves two sequentially issued PCIe transfers:
i) copying the keys from the host to the GPUs and ii) transferring the resulting
key-value pairs back to the host.

Fig. 11. Runtime decomposition of insertion and retrieval cascades on an
NVLINK-enabled node including PCIe transfers for 32 GB of 8 byte key-
value pairs. Ins1 and Ret1 denote the sequentially issued insertion and retrieval
cascades. Ins2/Ins4 and Ret2/Ret4 correspond to the multi-threaded variants
that overlap 2 or 4 cascades, respectively. The accumulated execution times
can be significantly reduced for Ins2, Ins4, Ret2, and Ret4.

at ≈ 210 GB/s accumulated bandwidth on global memory and

all-to-all transposition corresponds to ≈ 192 GB/s bandwidth

of the NVLINK interconnection network.

VI. CONCLUSION

Hash maps are of high importance to a variety of appli-

cations. In this paper, we have introduced WarpDrive – an

449

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 00:45:15 UTC from IEEE Xplore. Restrictions apply.

efficient multi-GPU hash map implementation targeting single

compute nodes. WarpDrive features three improvements over

the state-of-the-art:

1) a GPU-based hash map algorithm featuring a novel

subwarp-level probing scheme tailored to suit the char-

acteristics of high latency and high bandwidth video

memory.

2) a scalable multi-GPU hash map construction/querying

scheme that allows the building of hash maps containing

several billions of key-value pairs by exploiting fast

GPU interconnection networks.

3) an efficient asynchronous technique that allows for the

overlapping of communication primitives and inser-

tion/retrieval kernels.

The single-GPU variant performs at up to ≈ (1.7−2.7)×109

operations per second for device-sided insertion and ≈ (3.5−
5.5)×109 operations per second during device-sided retrieval.

The multi-GPU implementation utilizing four CUDA accelera-

tors provides device-sided insertion rates up to ≈ (4−7)×109

operations and ≈ (6−9)×109 queries per second. Host-sided

operations including PCIe transfers can be accomplished at up

to ≈ (2.5 − 2.7) × 109 insertions and ≈ 2 × 109 queries per

second. Moreover, we have proposed a mutli-GPU multisplit

primitive that allows for the efficient distribution of key-value

pairs across up to four GPUs. Both building blocks (intra-GPU

multisplit and inter-GPU transposition) process approximately

200 GB/s which is key for scalability.

Our experiments reveal that hash map performance is heav-

ily influenced by a non-trivial relationship between the three

parameters: load factor α, group size |g|, and capacity c. A

possible direction for future research could be design of a

heuristic which dynamically scales the group size |g| with

the current load factor. Furthermore, we have observed that

single-GPU performance decreases gradually for capacities

c > 2 GB. A possible workaround to further increase perfor-

mance could be the partitioning of high capacity hash maps

into several smaller hash maps each of size ≤ 2 GB.

ACKNOWLEDGMENT

Parts of this research were conducted using the supercom-

puter Mogon II and/or advisory services offered by Johannes

Gutenberg University Mainz (hpc.uni-mainz.de) which is a

member of the AHRP and the Gauss Alliance e.V.

We further would like to thank Computational Science

Mainz (CSM) for additional funding.

REFERENCES

[1] C.-Y. Lai, “Efficient Parallelization of Natural Language Applications
using GPUs,” Master’s thesis, EECS Department, University of Califor-
nia, Berkeley, May 2012.

[2] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzen-
macher, J. D. Owens, and N. Amenta, “Real-time Parallel Hashing on
the GPU,” in ACM SIGGRAPH Asia 2009 Papers, ser. SIGGRAPH Asia
’09. New York, NY, USA: ACM, 2009, pp. 154:1–154:9.

[3] J. Pan and D. Manocha, “Fast GPU-based Locality Sensitive Hashing
for K-nearest Neighbor Computation,” in Proceedings of the 19th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, ser. GIS ’11. New York, NY, USA: ACM, 2011,
pp. 211–220.

[4] R. Ounit, S. Wanamaker, T. J. Close, and S. Lonardi, “CLARK: fast and
accurate classification of metagenomic and genomic sequences using
discriminative k-mers,” BMC Genomics, vol. 16, no. 1, p. 236, Mar
2015.

[5] R. Kobus, C. Hundt, A. Müller, and B. Schmidt, “Accelerating metage-
nomic read classification on CUDA-enabled GPUs,” BMC Bioinformat-
ics, vol. 18, no. 1, p. 11, Jan 2017.

[6] A. M. Aji, L. Zhang, and W. c. Feng, “GPU-RMAP: Accelerating
Short-Read Mapping on Graphics Processors,” in 2010 13th IEEE
International Conference on Computational Science and Engineering,
Dec 2010, pp. 168–175.

[7] D. A. F. Alcantara, “Efficient Hash Tables on the GPU,” Ph.D. disser-
tation, Davis, CA, USA, 2011, aAI3482095.

[8] I. Garcı́a, S. Lefebvre, S. Hornus, and A. Lasram, “Coherent Parallel
Hashing,” in Proceedings of the 2011 SIGGRAPH Asia Conference, ser.
SA ’11. New York, NY, USA: ACM, 2011, pp. 161:1–161:8.

[9] F. Khorasani, M. E. Belviranli, R. Gupta, and L. N. Bhuyan, “Stadium
Hashing: Scalable and Flexible Hashing on GPUs,” in 2015 International
Conference on Parallel Architecture and Compilation, PACT 2015, San
Francisco, CA, USA, October 18-21, 2015, 2015, pp. 63–74.

[10] T. Maier, P. Sanders, and R. Dementiev, “Concurrent Hash Tables: Fast
and General?(!),” in Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’16.
New York, NY, USA: ACM, 2016, pp. 34:1–34:2.

[11] M. M. Michael and M. L. Scott, “Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms,” Rochester, NY,
USA, Tech. Rep., 1995.

[12] A. Pagh, R. Pagh, and M. Ruzic, “Linear Probing with Constant Inde-
pendence,” in Proceedings of the Thirty-ninth Annual ACM Symposium
on Theory of Computing, ser. STOC ’07. New York, NY, USA: ACM,
2007, pp. 318–327.

[13] M. Thorup and Y. Zhang, “Tabulation-Based 5-Independent Hashing
with Applications to Linear Probing and Second Moment Estimation,”
SIAM J. Comput., vol. 41, no. 2, pp. 293–331, Apr. 2012.

[14] P. G. Bradford and M. N. Katehakis, “A Probabilistic Study on Combi-
natorial Expanders and Hashing,” SIAM J. Comput., vol. 37, no. 1, pp.
83–111, Apr. 2007.

[15] P. Celis, P. A. Larson, and J. I. Munro, “Robin Hood Hashing,” in 26th
Annual Symposium on Foundations of Computer Science (sfcs 1985),
Oct 1985, pp. 281–288.

[16] M. Herlihy, N. Shavit, and M. Tzafrir, “Hopscotch Hashing,” in Proceed-
ings of the 22Nd International Symposium on Distributed Computing,
ser. DISC ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 350–364.

[17] D. Merrill and NVIDIA-Labs, “CUDA UnBound (CUB) Library.”
[Online]. Available: https://nvlabs.github.io/cub/

[18] D. Knuth, “Notes On ”Open” Addressing,” 1963.
[19] Y. Matias and U. Vishkin, “Converting High Probability into Nearly-

constant Time – with Applications to Parallel Hashing,” in Proceedings
of the Twenty-third Annual ACM Symposium on Theory of Computing,
ser. STOC ’91. New York, NY, USA: ACM, 1991, pp. 307–316.

[20] J. Preshing, “Junction Concurrent Hash Map.” [Online]. Available:
http://preshing.com/20160201/new-concurrent-hash-maps-for-cpp/

[21] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman, “Algorithmic
Improvements for Fast Concurrent Cuckoo Hashing,” in Proceedings of
the Ninth European Conference on Computer Systems, ser. EuroSys ’14.
New York, NY, USA: ACM, 2014, pp. 27:1–27:14.

[22] S. Ashkiani, A. Davidson, U. Meyer, and J. D. Owens, “GPU Multisplit,”
in Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’16. New York,
NY, USA: ACM, 2016, pp. 12:1–12:13.

[23] A. Adinetz and NVIDIA, “NVIDIA devblog: warp-aggregated atomics.”
[Online]. Available: https://devblogs.nvidia.com/parallelforall/cuda-pro-
tip-optimized-filtering-warp-aggregated-atomics/

[24] L. A. Adamic and B. A. Huberman, “Zipf’s law and the
Internet,” Glottometrics, vol. 3, pp. 143–150, 2002. [Online]. Available:
http://www.hpl.hp.com/research/idl/papers/ranking/adamicglottometrics.pdf

[25] A. Appleby, “MurmurHash3 as part of SMHasher.” [Online]. Available:
https://github.com/aappleby/smhasher/

[26] T. Mueller, “32 bit and 64 bit Mueller Hash Functions.” [Online].
Available: https://stackoverflow.com/a/12996028

450

Authorized licensed use limited to: Carleton University. Downloaded on September 21,2020 at 00:45:15 UTC from IEEE Xplore. Restrictions apply.

