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1 Introduction

Parallel computing is the study of computer and network architectures to determine how
to efficiently solve a problem by using large numbers of interconnected processors to each
individually solve part of the problem. Technologies have evolved to allow this to become
more and more feasable and the limits of single processor computing power in the light of
the thermal barrier have made these architectures more and more important. Many model
taxonomies for describing the types of architecture have been described in the literature.
The purpose of this paper is to explore the use of a particular model and technology (GPU)
to solve a specific problem (dynamic hash tables).

If we consider a model taxonomy that’s based on program control and memory access
(Floyd’s Taxonomy) then one model that we come to is that where multiple, identical
processors each have their own memory and execute a shared instruction stream. This is
the SIMD model. It’s particular well suited to problems where data can be partitioned
and assigned to each processor and each processor can compute it’s part of the solution
independently of the others. This kind of problem occurs frequently in image processing
problems (both 2D and 3D). Examples are image clipping, linear image transformations,
rendering and shading. Because of this the graphics processor unit (GPU) has been a
highly successful implementation of the SIMD model. Contrast this to the MISD model
where we have multiple processors sharing a common memory with each processor executing
a separate instruction stream. This model is that of the multi-core processor.

Researchers have turned to the question of leveraging GPU technology beyond graphics
algorithm processing to more general purpose computing problems (GPGPU). One such
problem that’s received attention recently is that of constructing a large hash table that
supports search, insert, update and delete operations. This is a basic capability that is useful
in a broad range of application areas (such as bioinformatics, computational geometry, deep
learning, visualization and data analysis). Results to date have shown that with state of
the art GPU hardware rates of operations numbering in the hundreds of millions or billions
per second can be achieved. These results appear to be an order of magnitude higher rates
than can be achieved with a MISD architecture.

The purpose of this project is to study recent implementations of GPU-based dynamic
hash tables to determine their performance characteristics, strengths and weaknesses and
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to explore ways to improve upon these implementations. TBD: the question of suitability
of GPU-based hash tables in specific application domains.

2 Literature Review

A review of the literature finds no fewer than seven implementations of GPU-based hash
tables that fall into three broad categories:

• Static hash table implementations for which there are papers available. Since the focus
of this project is on dynamic hash tables this category is included for completeness but
no study of these implementations is done. These are HashFight[5] and HashGraph[3].

• Hash tables that are implemented in broadly used GPU libraries. There’s limited
technical data available about them but they are used as baseline comparison imple-
mentations in the papers that fall into the other categories. These are cuDPP[6] and
cuDF[7]. cuDPP is a static hash table implementation and so is not explored further.

• The category of interest is implementations of dynamic hash table for which there’s
significant relevant technical literature. This is GelHash[2], SlabHash[1] and Warp-
Core[4]

Table 1 summarizes some characteristics found in the referenced literature for these imple-
mentations. The performance data is unconfirmed and is likely based on different hardware.

Name Code Insert Search Static Features

HashFight github 700 M/s 2.5 B/s Yes platform neutral; based
on data parallel primi-
tives

HashGraph github 2.5 B/s 2.0 B/s Yes Compressed Sparse
Row graph data struc-
ture

cuDPP Yes
cuDF No Python DataFrame im-

plementation
GelHash no 800 M/s 2.5 B/s No group atomicity
SlabHash github 512 M/s 937 M/s No slab-based memory allo-

cation
WarpCore github 1.6 B/s 4.3 B/s No batch and individual

updates, multi-GPU

Table 1: Summary of GPU-based hash table implementations

The thrust of this project will be to perform an in-depth study of four dynamic hash-
table implementations namely GelHash, SlabHash, WarpCore and cuDF. The remainder
of this literature review is a summary of the papers that describe the implementations of
dynamic GPU-based hash tables.
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SlabHash
SlabHash takes a distinctive approach to the difficult problem of memory allocation that
a hash table implementation must solve. It uses the slab-based allocation scheme which
has been used successfully in UNIX and Linux for the allocation of kernel objects. It’s
known to be fast and to not cause memory fragmentation. The hash table implementation
is based on a novel data structure termed the ”slab list” whose structure is aligned with the
underlying GPU thread, warp and memory structure in a way that minimizes the need for
cooperation and shared memory between threads and warps. The authors refer to this as a
”warp-cooperative” approach. No specific applications domains were cited as being best or
illustrative of SlabHash performance.

GelHash
This paper claims improvements over the approaches taken in SlabHash and cites online
transaction processing, OLTP, as an application area that demonstrates these improve-
ments. As with SlabHash, an approach to memory allocation is defined and a data structure
and locking strategy that benefits from the memory allocation approach is employed. To
execute the supported hash table operations GelHash uses an adaptive execution model that
chooses between thread-level and warp-level execution. To facilitate this it’s necessary to
benchmark an application’s typical operation patterns to arrive at a model that optimizes
between thread-level and warp-level execution. It’s not clear that this will be practical for
some applications. A challenge in verifying the performance of GelHash will be that there
seems to be no available reference implementation.

WarpCore.
This paper is an update to the authors’ earlier work on WarpDrive which was restricted to
32 bit single-value hash tables. It claims the highest performance numbers of any of the
gpu-based gash table implementations reviewed (both static and dynamic) and also claims
that this represents a two orders of magnitude increase over MISD based solutions. It is also
scalable across multi-GPU architectures using NVIDIA’s proprietary NVLink technology.
An interesting aspect of this implementation is a set of host interfaces that simultaneously
and efficiently allow both batch and individual updates. This means that, for example, dif-
ferent host programs performing different task that have different update patterns will work
efficiently. The authors describe how WarpCore can be used to improve the performance of
a bioinformations application, metagenomic classification.

cuDF
cuDF stands for CUDA Data Frame. It’s part of the Python CUDA RAPIDs Open GPU
Data Science project. A data frame is a popular Python data structure (typically from the
PANDAS library) that implements a data table whose rows and columns can be accessed
directly by their key. Hash tables are the way this is implemented. This project is well-
supported and is likely one of the first places that data scientists consult when looking for
GPU libraries to support their projects. We intend to evaluate the performance of cuDF
so that it can be consistently and accurately compared to the 3 other dynamic hash table
implementations.
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